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“
Preface

The financial industry has adopted Python at a tremendous rate

recently, with some of the largest investment banks and hedge funds

using it to build core trading and risk management systems.

— Python for Finance (O'Reilly)

Why this Course?
Technological trends like online trading platforms, open source software and open
financial data have significantly lowered or even completely removed the barriers of
entry to the global financial markets. Individuals with only limited amounts of cash at
their free disposal can get started, for example, with algorithmic trading within hours.
Students and academics in financial disciplines with a little bit of background
knowledge in programming can easily apply cutting edge innovations in machine and
deep learning to financial data — on the notebooks they bring to their finance classes.
On the hardware side, cloud providers offer professional compute and data
processing capabilities starting at 5 USD per month, billed by the hour and with
almost unlimited scalability. So far, academic and professional finance education has
only partly reacted to these trends.

The Finance with Python course teaches both finance and the Python (http://python.org)

programming language from ground up. It presents all relevant foundations — from
mathematics, finance and programming — in an integrated but not too technical
fashion. Traditionally, theoretical finance and computational finance have been more
or less separate disciplines. This has changed somewhat recently in that programming
classes (e.g. in C++) have become an integral part of Master of Financial Engineering
and similar university programs.

However, mathematical foundations, theoretical finance and basic programming
techniques are still quite often taught independent from each other and only later on
combined to computational finance. This course takes a different approach in that the
mathematical concepts — for example, from linear algebra and probability theory — 
provide the common background against which financial ideas and programming
techniques alike are introduced. Abstract mathematical concepts are thereby
motivated from two different angles: finance and programming. In addition, this

http://python.org/


approach allows for a new learning experience since both mathematical and financial
concepts can directly be translated into executable code that can then be explored
interactively.

Target Audience
The Python Quants offer a number of live and online training classes in Python for
Finance. Most of these expect the participants to have already some decent
background knowledge in both finance and Python programming or a similar
language.

This course starts completely from scratch, just expecting some basic knowledge in
mathematics, in particular from calculus, linear algebra and probability theory.
Although the course material is almost self-contained with regard to the mathematical
concepts introduced, it is recommended to use an introductory mathematics book like
the one by Pemberton and Rau (2007) for references if needed.

Given this approach, the course targets students, academics and professionals alike
that want to learn (more) about financial theory, data analysis and the use of Python
for computational finance. It is a perfect introduction to the field on which to build
through more advanced training classes offered by The Python Quants.

Overview of the Course
Currently, the course material is still under fast-paced development. Therefore, the
following gives a preliminary overview of the chapters as available already or
planned so far.

Two State Economy

The chapter covers the most simple model economy in which the analysis of
finance under uncertainty is possible: there are only two relevant dates and two
uncertain future states possible. One sometimes speaks of a static two state
economy. Despite its simplicity, the framework allows to introduce such basic
notions of finance as net present value, expected return, volatility, contingent
claims, option replication, arbitrage pricing, martingale measure, market
completeness, risk-neutral pricing and mean-variance portfolios.

Three State Economy



This chapter introduces a third uncertain future state to the model, analyzing a
static three state economy. This allows to analyze such notions as market
incompleteness, indeterminacy of martingale measures, super-replication of
contingent claims and approximative replication of contingent claims. It also
introduces the Capital Asset Pricing Model as an equilibrium pricing approach for
financial assets.

Optimality and Equilibrium

In this chapter, agents with their individual decision problems are introduced. The
analysis in this chapter mainly rests on the dominating paradigm in finance for
decision making under uncertainty: expected utility maximization. Based on a so-
called representative agent equilibrium notions are introduced and the connection
between optimality and equilibrium on the one hand and martingale measures and
risk-neutral pricing on the other hand are illustrated. The representative agent is
also one way of overcoming the difficulties that arise in economies with incomplete
markets.

Static Economy

This chapter generalizes the previous notions and results to a setting with a finite,
but possibly large, number of uncertain future states. It requires a bit more
mathematical formalism to analyze this general static economy.

Dynamic Economy

Building on the analysis of the general static economy, this chapter introduces
dynamics to the financial modeling arsenal — to analyze two special cases of a
dynmic economy in discrete time. The basic insight is that uncertainty about future
states of an economy in general resolves gradually over time. This can be modeled
by the use of stochastic processes, an example of which is the binomial process that
can be represented visually by a binomial tree.

Bibliography
The following provides an overview of published works used for and referenced in
this course. The overview is not yet complete and will be updated over time as the
writing progresses. The single chapters have their own references section as well.
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“
1. Finance and Python

Python is now wide-spread across investment banking and hedge

funds. Banks use Python for pricing, risk management and trade

management platforms. More recently, they’ve been reprogramming

their trading systems to run off Python rather than other, clunkier

languages.

— efinancialcareers (2016)

1.1. Introduction
This chapter gives a concise overview of topics relevant for the course Finance with
Python. It is intended to provide both the financial and technological framework for
the chapters to follow.

1.2. A Brief History of Finance
The history of finance as a scientific field can be divided roughly into three periods
according to Rubinstein (2006):

the ancient period: pre-1950 — a period mainly characterized by informal
reasoning, rules of thumb and experience of market practitioners

the classical period: 1950-1980 — a period characterized by the introduction of
formal reasoning and mathematics to the field; specialized models (e.g. Black and
Scholes (1973) option pricing model) as well as general frameworks (e.g. Harrison
and Kreps (1979) risk-neutral pricing approach) have been developed during this
period

the modern period: post-1980 — this period has generated many advances in
specific sub-fields of finance (e.g. computational finance) and has tackled, among
others, important empirical phenomena in the financial markets, such as
stochastic interest rates (e.g. Cox, Ingersoll and Ross (1985)) or stochastic volatility
(eg. Heston (1993))

One might add a fourth one today:



the computational period: post-2000 — this current period sees a shift from a
theoretical focus in finance towards a computational one, driven by advances in
both hardware and software used in finance; the paper by Longstaff and Schwartz
(2001) — providing an efficient numerical algorithm to value American options by
Monte Carlo simulation — illustrates this paradigm shift quite well; their algorithm
is computationally demanding in that 100,000s of simulations and multiple
ordinary least-squares regressions are required in general to value a single option
only

The evolution of finance over time is characterized by three major trends:

mathematics: starting in the 1950s with the classical period, finance has become a
more and more formalized discipline making systematic use of different fields in
mathematics, like linear algebra or stochastic calculus; the mean-variance
portfolio (MVP) theory by Markowitz (1952) can be considered a major
breakthrough in quantitative finance if not its starting point itself — leaving the
ancient period characterized mainly by informal reasoning behind

technology: the wide-spread availability and use of personal computers, work
stations and servers, starting mainly in the 1980s, brought more and more
technology to the field; while compute power and capacity in the beginnings were
rather limited, they have reached levels as of today that allow to attack even the
most complex problems in finance by sheer brute force, rendering the search for
rather specialized, efficient models and methods — that characterized the classical
and modern periods — often obsolete; the credo has become: “Scale your
hardware and use modern software in combination with appropriate numerical
methods.”; on the other hand, modern hardware found in most dorm and living
rooms is already that powerful that even high performance approaches, like
parallel processing, can generally be used on such commodity hardware — 
lowering the barriers of entry to computational finance tremendously

data: while researchers and practitioners alike mainly relied on printed financial
information and data in the ancient and classical periods (think of the Wall Street
Journal or the Financial Times), electronic financial data sets have become more
widely available starting in the modern period; however, the computational
period has seen an explosion in the availability of financial data; high-frequency
intraday data sets have become the norm and have replaced end-of-day closing
prices as the major basis for empirical research; a single stock might generate
intraday data sets with well over 10,000 data points every trading day — this



number is roughly the equivalent of 40 years worth of end-of-day closing prices for
the same stock (252 trading days per year times 40 years); even more recently, a
proliferation in open or free data sets has been observed which also significantly
lowers the barriers of entry to computational finance, algorithmic trading or
financial econometrics

1.3. A Four Languages World
Against this background, finance has become a world of four languages:

natural language: the English language is today the only relevant language in the
field when it comes to published research, books, articles or news

financial language: like every other field, finance has technical terms, notions and
expressions that describe certain phenomena or ideas probably not seen in many
other ares

mathematical language: mathematics is the tool and language of choice when it
comes to formalizing the notions and concepts of finance

programming language: as the quote at the beginning of this chapter points out,
Python (http://python.org) as a programming language has become the language of
choice in many corners of the financial industry

The mastery of finance therefore requires both the student and practitioner to be
fluent in all four languages: English, finance, mathematics and Python. This is not so
say that, for instance, English and Python are the only relevant natural and
programming languages. It is rather the case that if you only have a limited amount of
time to learn a programming language, you should most probably focus on Python — 
alongside mathematical finance — on your way to mastery of the field.

1.4. The Approach of this Course
How does this course go about the four languages needed in Finance? The English
language is a no brainer — you are reading it already. Yet, three remain.

For example, this course cannot introduce every single piece of mathematics in detail
that is needed in finance. Nor can it introduce every single concept in (Python)
programming in detail needed in computational finance. However, it tries to
introduce related concepts from finance, mathematics and programming alongisde
each other whenever possible and sensible.

http://python.org/


For example, take the central concept of uncertainty in finance. It embodies the notion
that future states of a model economy are not known in advance. Which future state
of the economy unfolds might be important, for example, to determine the payoff of a
European call option. In a discrete case, one deals with a finite number of such states,
like two, three or more. In the most simple case of two future states only, the payoff of
a European call option is represented mathematically as a random variable which in
turn can be represented formally as a vector  that is itself an element of the vector
space . A vector space is a collection of objects — called vectors — for which

addition and scalar multiplication are defined. One writes for such a vector for
example

Here, both elements of the vector are positive real numbers . More
concretely, if the uncertain, state-dependent price of the stock on which the European
call option is written is given in this context by

and the strike price of the option is , the payoff  of the European call option
is given by

This illustrates how the notions of the uncertain price of a stock and the state-
dependent payoff of a European option can be modeled mathematically as a vector. The
discipline dealing with vectors and vector spaces in mathematics is called linear
algebra.

How can all this be translated into Python programming? First, real numbers are
represented as floating point numbers or float  objects in Python.



1 Defines a variable with name vu  and value 1.5.

2 Defines a variable with name vd  and value 3.75.

3 Looks up the type of the vu  object — it is a float  object.

4 Adds up the values of vu  and vd .

Second, one calls collections of objects of the same type in programming usually
arrays. In Python, the package NumPy (http://numpy.prg) provides support for such data
structures. The major data structure provided by this package is called ndarray
which is an abbreviation for dimensional array. Real-valued vectors are
straightforward to model with NumPy .

1 Imports the NumPy  package.

2 Instantiates a ndarray  object.

In [1]: vu = 1.5   

In [2]: vd = 3.75   

In [3]: type(vu)   
Out[3]: float 

In [4]: vu + vd   
Out[4]: 5.25

PYTHON
1

2

3

4

In [5]: import numpy as np   

In [6]: v = np.array((vu, vd))  

In [7]: v   
Out[7]: array([ 1.5 ,  3.75]) 

In [8]: v.dtype   
Out[8]: dtype('float64') 

In [9]: v.shape   
Out[9]: (2,) 

In [10]: v + v   
Out[10]: array([ 3. ,  7.5]) 

In [11]: 3 * v   
Out[11]: array([  4.5 ,  11.25])

PYTHON
1

2

3

4

5

6

7
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3 Prints out the data stored in the object.

4 Looks up the data type for all elements.

5 Looks up the shape of the object.

6 Vector addition illustrated.

7 Scalar multiplication illustrated.

This shows how the mathematical concepts surrounding vectors are represented and
applied in Python. It is then only one step further to apply those insights to finance.

1 Defines the uncertain price of the stock as a ndarray  object.

2
Defines the strike price as a Python variable with an integer value ( int
object).

3 Calculates the maximum expression element-wise.

4 Shows the resulting data now stored in the ndarray  object C .

This illustrates the style and approach of this course:

1. Notions and concepts in fincance are introduced.

2. A mathematical representation and model is provided.

3. The mathematical model is translated into executable Python code.

In that sense, finance motivates the use of mathematics which in turn motivates the
use of Python programming techniques.

1.5. Getting Started with Python
The technical prerequites to follow along with regard to Python programming are
minimal. There are basically two options of how to make use of the Python codes:

In [12]: S = np.array((20, 5))   

In [13]: K = 15  

In [14]: C = np.maximum(S - K, 0)   

In [15]: C   
Out[15]: array([5, 0])

PYTHON
1

2

3

4
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